数列的极限

2022-09-19

问: 求数列极限 $\displaystyle \lim \sqrt{n^3}(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})$

解: 习题2.1(14-11), 注意到 $$ \begin{aligned} \sqrt{n+2}-2\sqrt{n+1}+\sqrt{n} =&\frac{(\sqrt{n+2}+\sqrt{n})^2-(2\sqrt{n+1})^2}{\sqrt{n+2}+\sqrt{n}+2\sqrt{n+1}}\\ =&\frac{2(\sqrt{n(n+2)}-(n+1))}{\sqrt{n+2}+\sqrt{n}+2\sqrt{n+1}}\\ =&\frac{2}{\sqrt{n+2}+\sqrt{n}+2\sqrt{n+1}} \frac{(\sqrt{n(n+2)})^2-(n+1)^2}{\sqrt{n(n+2)}+(n+1)}\\ =&\frac{2}{\sqrt{n+2}+\sqrt{n}+2\sqrt{n+1}} \frac{-1}{\sqrt{n(n+2)}+(n+1)}\\ \end{aligned} $$ 从而有 $$ \begin{aligned} =&\lim \frac{-2 \sqrt{n}}{\sqrt{n+2}+\sqrt{n}+2\sqrt{n+1}} \frac{n}{\sqrt{n(n+2)}+(n+1)}\\ =&\lim \frac{-2}{\sqrt{1+\frac2n}+1+2\sqrt{1+\frac1n}} \frac{1}{\sqrt{1+\frac2n}+(1+\frac1n)}\\ =&\frac{-1}4 \end{aligned} $$

Copyright (c) 2022